Delivering Internet-of-Things (IoT) Services in MobilityFirst Future Internet Architecture

Jun Li, Y. Shvartzshnaider, J. Francisco, R. Martin, K. Nagaraja and D. Raychaudhuri
WINLAB, Rutgers University
October 24-26th, 2012
A Big Question

• Does Internet of Things (IoT) need a new FIA design?
 – No, it is an overlay
 • IoT is just another name of Web of Things (WoT)
 • IoT is just a different expression of M2M, CPS (Cyber physical system) applications
 – Yes, it requires new in-network features
 • IoT is a network connecting to physical world objects same as Internet to computers now – for example, everything is addressable with an IPv6 address / identity
 • IoT is a pervasive / ubiquitous computing platform
• MobilityFirst – yes, IoT is a part of FIA
 – Things have Identities at MobilityFirst core network
 – Data from/to Things are distributed, processed and accessible at MobilityFirst core network
The Core Challenges of IoT

• Universal identity
 – EPCglobal, IPv6 enough? Security is the key

• Data and middleware API standards
 – The main reason that causes isolated information islands, IoT ≠ M2M Apps

• New business model
 – Mobile operator monopoly vs. open Internet service
Mobile networks – all IP flat networks

Sensors are IP nodes? All Things are IP nodes?
Problems of IPv6 ID?

• IPv6 (address as) Identity is not secure
 – DoS attack – address can be spoofed
 – In-network pay service not possible – extra layer, end-to-end session required

• When a Thing assigned to an IP identity
 – It may not run TCP/IP, in many cases, not need to do so
 – It is tied to a network resource associated to a network operator, inflexible for Things with multi-homing, dynamic-homing or no homing
MobilityFirst – GUID

- Global unique identification (GUID), separated from network location / operator:
 - For any networked objects: hosts, sensors, content or services
- Fundamentally secure
 - Anti-spoofing – DoS avoidance
 - Self-certifying – in-network pay service possible
- Transport requires no end-to-end session (TCP/IP)
 - Routing, transport are identity (GUID) based for hop-by-hop data blocks
 - Easily support mobility (disruptive service), in-network multicasting and in general any in-network service

<table>
<thead>
<tr>
<th>GUID:</th>
<th>Public Key of Owner</th>
<th>Optional Suffix</th>
</tr>
</thead>
</table>

October 24-26, 2012 IoT 2012
MobilityFirst Future Internet Architecture

- **Key Functions**
 - Fast name resolution (GNRS): GUID to address mapping at 50-100ms time scale
 - Routing of GUID objects
 - Delay tolerant network (DTN): Transport without end-to-end,

- **Key Features**
 - Self certifying, Multi-homing, In-network multicasting
 - In-network caching and computing layers
Things in Future Internet

- Things are source of dynamic data of interest to Internet applications
- Raw data are usually processed by IoT service (middleware)
- Challenges of traditional application layer approach:
 - Isolated information islands – no unified platform
 - High latency and traffic load over Internet
Overlay vs. In-network Distribution

- CDN (Content Distribution Network) solution
 - Overlay network with edge servers (ES) to reduce latency and traffic load
 - Services are accessed by URLs cached at ES
- MobilityFirst – in-network distribution
 - MF routers directly route, cache, compute GUID identified data and middleware (servicelet), enabled by in-network caching and computing layers
Challenges on Middleware Distribution

• GUID solves identity problem, but more challenges on middleware, which are
 – Lack of standards, complex, app-specific (Mobiiscape, UBIWARE, HYDRA etc.)
 – The main reason prevents the convergence of data (from Things). IoT remains difference from M2M apps.

• Linked-Data Space, the semantic web approach, could be the future of middleware for IoT
 – Things are data in Linked-Data Space
 – Middleware are database operations to Linked-Data Space
Semantic Web Technology

• Building up the relationships between data
 – Store web data with semantic links
 – Discover data from semantic query

• Basics
 – The relationship of data is represented in RDF (resource description framework) triples and graphs
 – The data source with semantic attributes can be query by SPARQL (an RDF query language)

• Linked Data
 – A huge collection of semantic databases over web
 – Sensors can also be linked data, live streaming data
An RDF graph sample

- Source: Ivan Herman W3C, Oct. 2011
Linked Data (Sept. 2010)

Source: Christian Bizer
Freie Universität
Berlin Germany
BNCOD’2011

Over 26.9 billion RDF triples

October 24-26, 2012
IoT 2012
Example: A context-aware IoT Service

• UbiCab, defined as
 – “James, walking on NYC streets, makes a call to a CONTEXT “Nearby Cab” – A phone call from James is automatically routed to a nearby taxi driver.

• Things: James and cabs, connected to network through their phones

• Data: GPS locations on their phones

• Middleware: an IoT service redirect a call from James to a “nearby cab”

• Overlay server: a web service runs at Taxilocation.com

• How in-network service is enabled in MobilityFirst
RDF Graph – as a Universal Service Description

- The IoT service is described in RDF (resource description framework) graph
- Service GUID: C1, Cab2 GUID: T2
- T2 subscribe/update to C1 are database operation over the RDF graph

GUID:C1

mf: GUID

http://TaxiLocation.com/nearbyCab

a:Pubkey

8438435780327523478532

GUID:T2

Http://NYCcab.com/cab1

Http://NYCcab.com/cab2

a:location

GUID: T2

Cab

Location

GPSValue

Linked-data Space (searchable)

8438435780327523478532
MF Router: an Edge Server for IoT Service

On-router Storage

Content

Serv C1

Apply RDF query

RDF Engine

SID = context

Resolved Context

Caching Engine

Check C1

Forwarding Engine

Service Table [Context]

NRS Table [GiDc -> NA]

Forwarding Table [GUID/NA -> Port]

Request

MF Get/Send

C1

SID: context

Payload: RDF query

Response

MF Get/Send

C1

SID: context

Payload: RDF query response

October 24-26, 2012
IoT 2012
Choice of Edge Servers

- GNRS server overloading
 - C1 maps to T2 based on dynamic computation (James Loc as input) on GNRS server for C1
 - Pros: simple, stateless, Cons: location of GNRS not near

- Nearby MF router caching
 - James’ request to C1 is computed at a nearby MF router E1 where the IoT service (RDF graph) is cached
 - Pros: location-aware, Cons: caching consistency
Typical IoT Services

- **Key features of IoT services**
 - Limited processing, sensitive to delay
 - Dependent on context (time, location & more)

- **In-network service distribution is more beneficial and feasible**
 - Fast response, traffic load balancing based on location information
 - Light-weight process

- **A V2V ad hoc net:**
 - Disconnected / low rate to back haul
 - Traffic only locally significant
 - Fast response, light-weight process

Not for apps requiring heavy duty middleware
New Business Model: GUID based charging

- **Internet, CDN and Cloud computing**
 - Accounting based on access control and secure channels required
 - Authentication and Authorization via account management

- **MobilityFirst – pervasive computing**
 - Authentication and authorization via GUID certificate
 - Accounting based on GUID signature verification
 - Can implement charging to access GUID (flat rate), service GUID (800#) and user GUID (pay-per-view)
 - No access control and/or secure channel are needed
Charging on GUID

- C1 agrees to pay for MobilityFirst in-network service caching
- T1, T2 agree to pay service provider of C1 at subscription
- T1, P1 requests to C1 are accounted by in-network service and charged to service provider GPSlocation.com
Conclusions

MobilityFirst routers and protocol stack enable efficient IoT service distribution

- Universal identity (GUID) and middleware service description (RDF)
- MF routers offer in-network processing of GUID identified / RDF described IoT service
- GUID identity based business models are feasible between MF and IoT service (operators), IoT services and subscribers, IoT services and consumers.